If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3u^2-63=0
a = 3; b = 0; c = -63;
Δ = b2-4ac
Δ = 02-4·3·(-63)
Δ = 756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{756}=\sqrt{36*21}=\sqrt{36}*\sqrt{21}=6\sqrt{21}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{21}}{2*3}=\frac{0-6\sqrt{21}}{6} =-\frac{6\sqrt{21}}{6} =-\sqrt{21} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{21}}{2*3}=\frac{0+6\sqrt{21}}{6} =\frac{6\sqrt{21}}{6} =\sqrt{21} $
| 3u^2-63u=0 | | 2g+2g+3g=7 | | a8=96 | | n+4-7=2 | | 5-a/6=12 | | 8x^2-39x+20(3x-4)(6x-5)=0 | | 4x/3+2=-10 | | -5+m+7m-19m=16 | | 2k-k+2k-2k=17 | | -3x3-x2+54x-40=2x2+6x+20 | | 7-3a/4=10 | | 60+x+2x=180 | | 6m^2+69m+33=0 | | 6m^2+69+33=0 | | 20x^2-405=0 | | 2n/3-5=7 | | 10.x-13=27 | | y-2=-3(X+1) | | 4v^2+36v-88=0 | | x^-1/4+3=0 | | 15c+c-16c+4c=20 | | 3n/5+7=-11 | | 8y-2=-2(-4+1) | | n÷1.6=5 | | 13t+2t-15t+2t-t=5 | | -8n+5-n=23 | | 9p^2-279p=0 | | 3(x+5)^2=7 | | M+4m=20 | | 74f^2-92f=0 | | 15c-12c+6c=18 | | 18h+3h-17h=8 |